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CONDITIONS FOR THE ONSET OF SLIDING IN A 
PLANE SYSTEM WITH FRICTIONt 
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Moscow 
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The problem of the plane motion of a rigid body along a fixed surface in the presence of dry (Coulomb) friction is considered. 
The constraint is assumed to be non-restraining. It is shown that the validity of a certain system of two inequalities of the same 
type guarantees that the surfaces maintain contact and that the body will continue to roll without sliding. These conditions are 
analysed in a few specific eases of mechanical systems. 

1. THE C, O N D I T I O N S  THAT E N S U R E  P U R E  R O L L I N G  OF A BODY 

We shall consider the plane-parallel motion of a rigid body which can roll and slide along a fixed surface. 
Let us suppose that the contour of the body is represented in the plane of the motion, which passes 
through the centre of mass G of the body, by a regular closed convex curve PS, while PS1 is the support 
curve; at each instant the curves are in contact at a single point. 

Let us introduce a moving system of coordinates Pxy in which the axis Py is directed into the moving 
body; let (~, rl) denote the coordinates of the centre G, m, o~ and o 1;2 the mass, instantaneous angular 
velocity and central radius of inertia of the body, respectively, and kl and k the curvatures (with signs) 
of the curves PS1 arid PS, respectively. Throughout, coordinates of vector quantities will be specified 
in the system Pxy. 

If the instantaneous velocity of the point P of the body is not zero, then the total reaction R(F, N) 
exerted on the body by the support surface has a normal component N > 0 and a tangential component 
F = fN, wheref  (0 < f < 1) is the coefficient of dry friction. In the ease of pure rolling the instantaneous 
velocity of the point of contact of the body and the curve PS1 is a constant, equal to zero, and the reaction 
R lies within the double angle of friction M'PM (Fig. 1). Consequently, the following inequalities hold 

momA(R) < 0, moma.(R) > 0 (1.1) 

where A and A' are arbitrary points on the rays PM and PM', respectively. Later we shall specify the 
choice ofA andA'. 

When the body is rolling without sliding, the point P is the instantaneous centre of velocities, with 
r 2 1 acceleration an = t~0, to (k - ki)- [1, 2]. The principal vector of forces of inertia is -mao  = 

2 2 " -1 . . . . . .  rn(¢o ~, to (rl - (k - kl) ), and the principal moment of forces of inertia is -mo0~. 
By d'Alembert's principle, the reaction R, forces of inertia and active forces exerted on the body always 

form a zero system. In particular, this implies that the sum of the moments of these forces about an 
arbitrary point A(x, y) in the plane must vanish 

f 
m(x~ +yrl _ ~ 2  112- ~)tb+ m(o2 [y~_  xlq + ~ [+ ~"~A + momA ( R ) = 0  

k-~q ) 
(1.2) 

(Y'A is the principal moment aboutA of the active forces exerted on the body). IfA is taken on the line 
of critical poles [3] 

(1.3) 

then the angular aco~leration of the body does not occur in Eq. (1.2). 
We will take asA andA' in inequalities (1.1) the points at which the straight line (1.3) cuts the rays 
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PM and PM'. Denote these points by D and D'. We have 

YD = ~2 +i.12 +U 
rl+~ ' x o = Y o f  

The coordinates of D" are obtained by replacing f by - f  in these formulae. 

Theorem. The body will continue to roll without sliding if and only if the points D and D'--provided 
both are in the finite part of the plane---satisfy the conditions 

(rl + F.J)momv(R) < 0, ( r l -~S)momu(R) > 0 (1.4) 

Proof. The straight lines y + x f  = 0 (KK') and y - x f  = 0 (LL') divide the plane into four domains 
(Fig. 1). When the centre of mass G(~, rl) lies inside the angle LPK, inequalities (1.4) follow readily 
from conditions (1.1). 

If the centre of mass falls on the ray PK, the line (1.3) of critical poles becomes parallel to the straight 
line x - yf = 0 and the point D goes to infinity. If the centre of mass falls inside the angle KPL', then 

- ~ > 0,11 + ~f < 0. The constraint is strained, and pure rolling will continue if and only if momo(R) 
> 0, monaD, (R) > 0, implying the truth of (1.4). 

The remaining two cases, in which the centre of mass lies within the angle L'PK" or the angle LPtC, 
are dealt with in a similar fashion. 

Note that when one of relations (1.4) becomes an equality, the line of action of the reaction R will 
coincide with the appropriate side PM or PM" of the double angle of friction. At the next instant the 
body will begin to slide although, theoretically speaking, it may still be possible that rolling will continue. 
To bring an issue to a close the analysis must be performed anew each time. However, in view of the 
fact that the limiting position of the vector R depends on the friction coefficient off, whose numerical 
values are determined experimentally and not very accurately, such an analysis is of little interest in 
applications. We will therefore assume that, when the force R reaches its limiting direction, the body 
immediately begins to slide. 

Finally, if both relations (1.4) become equalities, then R = 0, i.e. the constraint is not imposed. This 
completes the proof of the theorem. 

Applying (1.2) to the case in which the point A is put equal to each of the points D and D" in turn, 
we can rewrite the inequalities (1.4) as 



Conditions for the onset of sliding in a plane system with friction 847 

mtO2 (yI + ~f)CYD~ -- XD~ + XD --~ )+ (~ + ~J:)Y'D > -- k I 

mtO2(~--~J:)CYD'~--XD'~+XD'--~ )+(~--~'f)Y'D" -- k, 

It is of some interest to analyse these conditions for specific examples of mechanical systems. 

(1.5) 

Remarks. 1. Bolotov [3], considering the same problem, showed that the body will continue to roll if 

LTI+ XI (~ 2 + O) + Yl~tl /. 
_/.~ + Xlgtl+ yi (0 + t12) <~ 

(1.6) 

where X1 ffi X + m~j2~, Y1 = Y + mc02(q - (k - kl) -1) and (X, Y) and L are the principal vector and principal 
moment, respectively, of the active forces when reduced to the point G(~, 11). Bolotov's proof of (1.6) is based on 
different geometrical arguments. 

However, it is not difficult to rewrite condition (1.6) as a system of inequalities of type (1.5). To do this it suffices 
to observe that, if the: constraint is strained, then N > 0, which is equivalent to 

- ~ + X l g t l +  Yl(o+q2) < 0 (1.7) 

Thus, Bolotov's condition is equivalent to the three inequalities (1.5) and (1.7). The theorem set out above says 
more: the condition for body and support to remain in contact follows logically from inequalities (1.5). 

2. Most of the few theoretical publications on dry friction [3-5] are devoted to the fact that the equations of 
motion do not have unique solutions (the Painlev6 paradox in systems with restraining couplings, the self-stopping 
phenomenon). There are several simple examples of systems (a homogeneous disk and a homogeneous sphere on 
a plane with friction) in which the alternation of rolling and sliding may be studied directly by means of easily 
integrable equations of motion [6]. 

2. R O L L I N G  OF AN I N H O M O G E N E O U S  W H E E L  ON 
A H O R I Z O N T A L  R A I L  

Let the support curve be a horizontal straight line (k 1 -- 0) and let the body be a heavy inhomogeneous 
circular disk (k = 1/r). Let 9 denote the angle between the downward vertical and the segment OG 
(where O is the geometric centre of the disk). 

In dimensionless form, conditions (1.5) may be written as 

a_ +b <0; fl=c02rg -I (2.1) 

where 

d+ = (~2 "4- 1"12 -- ~ + O)(~  ::]: l l f  ) "4" Of., b± = --~T~ "4" (q2 + o ) f  

= p s in  9 ,  B = 1 - p cos ~0, g is the acceleration due to gravity, pis  the ratio of the length of OG to 
r, and o is the central moment of inertia of the body divided by mr ~. 

In the translating system of coordinates Pxy (where P is the point of contact and the axis Py points 
vertically upward), the trajectory of the centre of mass G of the disk is a circle C 

92 + (q _ 1)2 = p2 (2.2) 

Depending on the position of G on this circle, the numerical values of the parameters f, 0 and p, and 
the value of the instantaneous angular velocity of rotation, the disk will subsequently continue to roll, 
begin to slide or break away from the support. The exact result depends on conditions (2.1). 

Values of the parameters f,  p and o are specified so as to satisfy the inequality o > ~ q f -  92, 
c. 

As shown in [3], if this inequality fails to hold in a system under conditions of sliding, shock reactions 
may occur and, in the case of a restraining constraint, the solution may not be unique (Painlev6's 
paradox). 

Investigating the curve 
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(x 2 +y2  -y+O)(x-yf)+of=O 

by the Newton-Puisex method [7], we obtain an asymptotic expansion 

X o f  2 1 
Y=--+f  l + f 2  X 2 +"" 

(2.3) 

from which it follows that, if I x I is large enough, the curve (2.3) will lie above its asymptote x - y f  = 0. 
We also observe that, for any values of the parameters, the curve will always cut the OYards at the point 
y = 1 and the OX axis at a single point f < x0 < 0. 

The form of the curve (2.3) fo r f  = 0.4 and a few values of o is shown in Fig. 2. For small o an additional 
closed branch may appear (this case is not considered). The curve 

-xy  + (y2 + t~)f = 0 (2.4) 

is a hyperbola whose branches are centrally symmetric about the origin P and have asymptotes y = 0 
and x - y f  = 0; at no parameter values do the curves (2.3) and (2.4) intersect, since the left-hand side 
of (2.3) is equal to (x2+ y2 + o _y)ofy-1 + of  = (x 2 + y2 + o)o~v-1 ~ 0. 

Note that conditions (2.1) are invariant to the replacement of~ by--~. It will therefore suffice to analyse 
them for g ~ 0. 

In the right half-plane x > 0, the line a+(x) = 0 is represented by the curve (2.3) and the line b+(x) 
by the right branch of the hyperbola (2.4), whose left-most point has the abscissa 2fo 1/2. The line 
a_(x) = 0 is obtained by symmetric reflection in the Py axis of the part of the curve (2.3) that lies in the 
left half-plane. Finally, the curve b_(x) is obtained by the same reflection of the left branch of the 
hyperbola (2.4). 

Depending on whether the lines b+(x) = 0 and a_(x) = 0 intersect or not, the above four curves divide 
the half-plane x > 0 into five or six domains, respectively (Fig. 3 shows the case (f  = 0.3, o = 0.1, 
p = 0)). Put 

~l  = -b+ / a+, Xq 2 = -b_ / a_ (2.5) 

Suppose that the instantaneous velocity of the point P of the disk is zero. If the centre of mass is in 
domain 1, then a+ .> 0, b+ > 0, a_ < 0, b_ < 0. Consequently, conditions (2.1) are satisfied and there 
can be no sliding, whatever the angular velocity of rotation of the disk. 

-O,5 

I 

I ° 't 
A ///, 

£/  
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Fig. 2. Fig. 3. 
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In domain 2 we have a+ > 0, b+ > 0, a_ > 0, b_ < 0. Pure rolling is maintained if the angular velocity 
of the disk is not too large fl < f12. 

In domain 3, a÷ > 0, b+ > 0, a_ > 0, b_ > 0. The first inequality in (2.1) is satisfied, the second is 
not. When the centre of mass is in domain 3 the disk necessarily begins to slide. 

When the centre of mass is in domain 4, pure rolling is maintained provided that fll < f~ < f12 (it 
may be verified directly that the inequality fll < f~2 is always true). In domain 6 the condition for rolling 
to continue is expressed by a single inequality, f~ > t~ 1. 

Finally, in domain 5, i.e. when the centre of mass of the disk is in a sufficiently high position, we have 
a+ < 0, b÷ > 0, a_ > 0, b_ < 0. Conditions (2.1) take the form f~ < f~l and f~ < f12. In that situation 
we have fll > t22, i.e. 

~1~ -- (112 + ( ~ ) f  

(~2 +112 _ 11+ (~)(~_ 1]f)+ (~f 
~1] + (112 + t~)f 

> (~2 +112 -1]+(~)(~+l~f)-( I f  

(this is indeed true, since it can be reduced by equivalent transformations to the obviously true relation 
(a + ~2 + 112)2~1]q f > 0). Consequently, rolling will be maintained if fl < f12. Conversely, if the angular 
velocity is large, f~ > f~l, both conditions (2.1) fail to hold and the constraint is weakened. In the interval 
f12 < f~ < f~l the disk begins to slide without breaking away from the support. 

When ~ < 0 the pattern of alternating rolling and sliding is completely symmetric. 
The conditions fi~r rolling to continue could have been expressed not in terms of f~, which is the square 

of the dimensionless angular velocity of the disk, but in terms of the constant h of the energy integral 
(~2 + 112 + a)f~ = 2(h - 1]). An attempt to do this was made, on the assumption that p > 1, in [8], but 
because of analytical difficulties, only the solution of the special case, when a (disk-shaped) pendulum 
swings at an ever-increasing amplitude and begins to slide after reaching a position of maximum deviation 
from equilibrium, was obtained. In the notation used here, this position corresponds to the point at 
which the circle (2.2) intersects the boundary of domain 3. 

3. ROTATION A B O U T  THE V E R T I C A L  OF A BODY WITH 
C Y L I N D R I C A L  SUPPORTS,  U N D E R  THE ACTION OF 

A P E R M A N E N T  T U R N I N G  MOMENT 

Suppose that the support is a vertically positioned stationary circular cylinder of radius rl on which 
a rigid body is "threaded" through its cylindrical hole of radius r > rl. We shall refer to this body as a 
"washer". A body with pins of radius r, inserted in two stationary and vertically positioned coaxial 
cylindrical holes of radius rl > r, will be called a "roller". The centre of the support will be denoted by 
01 and the centre of the hole (pin) in the body by O. A couple reduced to a vertical moment of constant 
magnitude M is applied to the body. 

In dimensionles:5 form, conditions (1.5) will be written as (2.1), where 

a± = (~2 + 112 _ 1]1 + c ) (~ '~  1]f) +- t~lf, b± = n(1] + ~.,f) 

The expressions for a+ and a_ contain one more non-dimensional parameter I = j r l ( r l  - 0 -1 (j = I for 
the "roller", andj  = -1 for the "washer"), which characterizes the clearance in the coupling. For the 
"roller", 1 < l < +** while for the "washer", 0 < l < +.o. In both cases, when the clearance tends to 
zero the parameter I tends to +**. 

The position of the body when the constraint is imposed and the body may slide is defined by two 
angles tp and 1]. If P is the point of contact between the body and the support, then, as pointed out 
above, the positive semi-axis Py of the moving system of coordinates Pxy will point into the moving body. 
The angle 11 is measured in the counterclockwise sense, from a fixed ray 011t, arbitrarily chosen in the 
plane of the motion, to the negative semi-axis Py and the angle (p from the negative semi-axis Py to the 
direction OG,  which is fixed in the body. 

In the case of pure rolling we deduce from the condition rldO = -rdtp that 0 = r(c - tp)/rl, where the 
constant of integration c (an additional parameter) is the angular coordinate (p of the centre of mass 
at the instant the negative semi-axis Py coincides with the fixed ray 01H.  

The actual coordinates of the centre of mass G of the body in the moving system Pxy are determined 
by the formulae ~ ---- p sin ~, 11 = f -  p cos (p. Thus, inequalities (2.1) do not contain 0. This fact simplifies 
the analysis. 
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The equation of the trajectory of G in coordinates Pxy is 

~2 + (11 _ j)2 = p2 (3.1) 

We will investigate how conditions (2.1) depend on the position of the point G on this circle and the 
values of the parameters f, o, p and the instantaneous angular velocity of the body in the case of most 
practical interest---when the clearance is small, i.e. l -> 1. 

The curve 

(x 2 +y2 - y l + f f ) ( x - ) f ) + f f l f  = 0  (3.2) 

has an asymptotic representation 

x t~(/f) 2 l 
y = ~ 4  ~ i- .... 

f 1 + ( / f ) 2  X 2 

and it contains the point (0, 1) for any parameter  values. 
It can be shown, using the fact that the parameters 0 < f < 1, o, l, are positive, that the curve in 

question (more precisely, its branches in the finite part of  the plane) does not have singular points. The 
shape of the curve (3.2) f o r f  = 0.4, o = 1 and I = 4, 7, 9, and 11 is shown in Fig. 4. A curious phenomenon 
is the dosed branch that appears in the first quadrant as the clearance is reduced. 

This fact is easily proved analytically. Rewriting Eq. (3.2) in the form 

y3 _ (l + x f  -I )y2 + (ff + x 2 + x/f-! )y _ (x 3 + t ~ x ) f . I  _ t~l = 0 

and carrying out the standard substitution y = z + (1 + xfq)/3, we obtain the equation z 3 + p z  + q = 
O. It is well known that this equation has exactly one real root if the diserirainant is such that -4p 3 - 
27q 2 < O, and three roots if the inverse (strict) inequality holds. We have 

(4p3 + 27q2)f4 = 4(f2 + 1)2 x 6 _ 8fl(f2 +l)x 5 + 

+[ (12f f -12) f  4 + 2 ( 8 0 + 1 2 ) f  2 + 4 0  - /2]x4+2/f ' [ (10ff+12)f  2 -2 f f+12]x  3+ 

+f2 [4a(3a - 512 )f2 + 8(i2 -- 4al2 _ l  4 ]X2 + 4 f3a l (7a  _ 12)x + 4f4~(ff  + 12)2 

- 6  

Fig. 4. 

#- 
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Consequently, for fixed values of the parameters o and f ,  when I is allowed to increase without limit, 
an additional branch appears in the x-finite part of the plane in whichx 2 > 4of .  Moreover, for sufficiently 
large but finite values of l, this branch will be closed. It will lie in the first quadrant since, if we rewrite 
(3.2) as a polynomial in x and calculate the discriminant of the corresponding reduced equation, it is 
equal to 4y31Y + O([Z). When I >> 1, therefore, Eq. (3.2) has three roots x(y) only i fy  > 0. Moreover, 
two of them are greater than yf  < If, since for fixed values ofy  < 1 and the parameters, the left-hand 
side of (3.2) changes sign twice whenx increases f romyf to  infinity. At I >> 1 Eq. (3.2) gives two branches 
- )3  + x y f  1 - o + 0(1 / l )  = 0 of the curve. The branch in the first quadrant is created from the closed 
loop described above. The branch in the third quadrant represents the part of the curve a+(x, y )  = 0 
lying below the Px ~ds. Its other part goes to infinity. 

The curve -)3 + xyf-1 _ o = 0 has two asymptotes y = 0 and y = x f  1. Its points nearest the Py axis 
have ahscissaex = _~:2fo la. 

Figure 5, plotted for the case I = 1000,f = 0.4 and o = 1, shows the curves a+(x ,y)  = 0, a_(x,y)  = 
0 and straight lines b+(x ,y)  = O, b_(x,y)  = 0, which divide the Pxy plane into 12 domains. By analogy 
with what was done in Section 2, it is not difficult to formulate the conditions for pure rolling to be 
maintained. The final result is as follows. 

Using the notation (2.5) we find that f~1 --> 0, f~2 -> 0 as l -~ +oo. Therefore, for very small clearances, 
conditions of the type ~ > f~l or f~l < f2 < f~2 are unrealizable in practice. For that reason, ff the 
centre of mass of the body lies inside the domains bounded by the branches of the hyperbolas, and f~ 

0, the body will slide. Let M > 0. Then rolling will be maintained in domain I when f~ > f~l and in 
domain 2 when [2 > f12. If M < 0 the inequalities are interchanged. 

Thus, in the context of the mechanical model considered here, for small clearances a fairly well 
balanced body (e.g. when p < 2fum),  both "roller" and '%vasher" may be accelerated (or decelerated) 
to the required value of angular velocity without expending mechanical energy to overcome sliding 
friction at the supports. Moreover, when there is no active external torque the body will continue to 
roll without sliding. The principal technical difficulty is to implement the no-sliding condition at an 
arbitrary instant of time when co ~ 0. 

This research was carried out with the financial support of the International Science Foundation 
(MAKO00). 
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